2-1-الگوریتم نزدیک­ترین همسایه. 11

2-2- محدودیت­های روش نزدیک­ترین همسایه. 14

2-3- مروری بر راه­کارهای ارائه شده در گذشته برای بهبود الگوریتم نزدیکترین همسایه. 15

فصل سوم  18

روش­های تصمیم­گیری دسته­جمعی.. 18

3-1- مقدمه. 19

3-2- روش­های متفاوت برای ایجاد یک تصمیم­گیر دسته­جمعی.. 21

3-3- ساختارهای مختلف در روش تصمیم­گیری دسته­جمعی.. 22

3-4- رای­گیری بین دسته­بندها 23

3-5- معرفی چند روش تصمیم­گیری دسته­جمعی پرکاربرد. 24

فصل چهارم  28

روش پیشنهادی برای دسته­جمعی کردن الگوریتم نزدیک­ترین همسایه. 28

پایان نامه

4-1- مقدمه. 29

4-2- ایده­ی اصلی.. 30

4-3- دسته­جمعی کردن مجموعه دسته­بندهای وزن­دار نزدیک­ترین همسایه. 31

فصل پنجم   39

نتایج آزمایشات پیاده سازی و نتیجه­گیری.. 39

5-1- نتایج.. 40

فصل ششم   45

نتیجه­گیری   45

فهرست منابع.. 48

  • مقدمه

در دنیای امروزی حجم اطلاعات دیجیتالی به صورت روز افزونی در حال افزایش است. در همین راستا، به جهت مدیریت و بررسی علمی این اطلاعات، نیاز به پردازش هوشمندانه و خودکار این اطلاعات بیش از پیش احساس می شود.

یکی از مهم ترین این پردازش ها که در فناوری اطلاعات و ارتباطات مورد نیاز است، دسته­بندی خودکار این اطلاعات می باشد. دسته بندی در مسائل متنوعی در فناوری اطلاعات به کار گرفته می شود، در مسائلی مانند امنیت اطلاعات، شناسایی نفوزگری در شبکه، دسته بندی کاربران بر اساس اطلاعات شخصی، پردازش تصویر و در واقع شناسایی هر گونه الگو بر اساس نمونه­ها و اطلاعات پیشین. این پردازش می تواند دسته[1]­ی نمونه­های جدید که به مجموعه اطلاعات اضافه می شود را پیش بینی نماید. از این رو در هوش مصنوعی توجه خاصی به توسعه انواع روش­های دسته­بندی هوشمند و خودکار شده است.

روش­های دسته­بندی

دسته­بندی یکی از مهم­ترین شاخه‌های یادگیری ماشین[2] است. دسته­بندی به پیش­بینی برچسب دسته[3] نمونه[4] بدون برچسب، بر اساس مجموعه نمونه­های

یک مطلب دیگر :

پایان نامه رایگان درمورد قانون مجازات، قاعده احسان، امام صادق

 آموزشی برچسب­دار (که قبلا به با کمک یک کارشناس دسته­بندی  شده­اند) گفته می­شود. درواقع دسته­بندی روشی است که هدف آن، گروه­بندی اشیا به تعدادی دسته یا گروه می­باشد. در روش‌های دسته­بندی، با استفاده از اطلاعات بدست آمده از مجموعه نمونه­های آموزشی، از فضای ویژگی­ها[5] به مجموعه برچسب دسته­ها نگاشتی بدست می آید که بر اساس آن، نمونه­های بدون برچسب به یکی از دسته­ها نسبت داده می­شود.

در مسائل دسته­بندی، هر نمونه توسط یک بردار ویژگی[6] به صورت X=<x, x,… xm> معرفی می­شود که نشان دهنده­ی مجموعه مقادیر ویژگی­های نمونه­ی­ مربوطه است. بر اساس این بردار، نمونه­ی ­ X دارای m خصوصیت یا ویژگی است. این ویژگی­ها می­توانند مقادیر عدد صحیح، اعشاری ویا مقادیر نامی[7] به خود اختصاص بدهند. همچنین این نمونه دارای یک برچسب C است که معرف دسته­ای­ است که نمونه­ی­ X به آن تعلق دارد.

تفاوت روش­ها دسته­بندی در چگونگی طراحی نگاشت است. در بعضی از آن­ها با استفاده از داده­های آموزشی مدلی ایجاد می­شود که بر اساس آن فضای ویژگی­ها به قسمت­های مختلف تقسیم می­شود که در آن، هر قسمت نشان دهنده­ی یک دسته است. در این گونه روش­های دسته­بندی از مدل برای پیش­بینی دسته­ی­ نمونه بدون برچسب استفاده شده و از نمونه­­های آموزشی به طور مستقیم استفاده نمی شود. یک نمونه از این دسته­بندها، دسته­بندهای احتمالی[8] می­باشد. این گونه الگوریتم­ها، از استنتاج آماری برای پیدا کردن بهترین دسته استفاده می­کنند؛ برخلاف سایر دسته­بند­ها که فقط بهترین کلاس را مشخص می­کنند الگوریتم­های احتمالی به ازای هر دسته موجود یک احتمال را به عنوان تعلق نمونه به آن مشخص می­کنند و کلاس برنده، بر اساس بیشترین احتمال انتخاب می­شود. روش­های احتمالی در یادگیری ماشین معمولا با نام الگوریتم­های آماری نیز شناخته می­شوند. در گروهی دیگر از روش­های دسته بندی، نمونه براساس خود مجموعه نمونه­ها و بدون ساختن مدل، به پیش­بینی دسته­ی نمونه مورد نظر می­پردازد. به این گونه الگوریتم های دسته­بندی، نمونه- بنیاد[9] گفته می­شود.

تاکنون الگوریتم­های متفاوتی به عنوان دسته­بند ارائه شده­اند. از جمله­ی­ آن­ها می­توان به الگوریتم نزدیک ترین همسایه­ها[10] [1] ، دسته­بند بیز[11][2]، ماشین بردار پشتیبان[3] و شبکه عصبی[12][4] اشاره کرد.

  • ارزیابی دسته­بند

اولین موضوعی که در مورد هر الگوریتم مورد توجه قرار می­گیرد، کارایی و دقت آن الگوریتم است. در هوش مصنوعی، معیار­های متفاوتی وجود دارند که در مسائل مختلف و زیر شاخه­های این علم استفاده می­شود. در مورد کارایی یک دسته­بند­، به عنوان یکی از مسائل اصلی هوش مصنوعی، روش­های متنوعی وجود دارد که در این قسمت بررسی شده­اند.

معیار کارایی نظر­گرفته شده برای یک دسته­بند، ارتباط مستقیمی با کاربرد و ضمینه کار خاص آن دسته­بند دارد. بنابراین در مسائل متفاوت، ممکن است معیار­های مختلفی برای اندازه­گیری کارایی الگوریتم در نظر­گرفته شود. همچنین همان طور که مشخص است، یک دسته­بند که بتواند برای همه مسائل موجود بهترین جواب را ارائه دهد، وجود ندارد.

دسته‌ها: Uncategorized

0 دیدگاه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *