سایت دانلود

تحقیق ها مقاله ها و پایان نامه ها
کامپیوتر (سخت افزار و نرم افزار)

تفاوت داده کاوی با OLAP

متن کامل این پایان نامه :داده کاوی در صنعت

منبع : سایت تخصصی پایان نامه

دسته پایان نامه های رشته کامپیوتر

دومین خانواده ای که داده کاوی به آن تعلق دارد هوش مصنوعی[1] می باشد. هوش مصنوعی که بر پایه روشهای ابتکاری می باشد و با آمار ضدیت دارد، تلاش دارد تا فرایندی مانند فکر انسان، را برای حل مسائل آماری بکار بندد. چون این رویکرد نیاز به توان محاسباتی بالایی دارد، تا اوایل دهه 1980 عملی نشد. هوش مصنوعی کاربردهای کمی را در حوزه های علمی و حکومتی پیدا کرد، اما نیاز به استفاده از کامپیوترهای بزرگ با عث شد همه افراد نتوانند از تکنیکهای ارائه شده استفاده کنند.

سومین خانواده داده کاوی، یادگیری ماشین[2] می باشد، که به مفهوم دقیقتر، اجتماع آمار و هوش مصنوعی می باشد. درحالیکه هوش مصنوعی نتوانست موفقیت تجاری کسب کند، یادگیری ماشین در بسیاری از موارد جایگزین آن گردید. از یادگیری ماشین به عنوان تحول هوش مصنوعی یاد شد، چون مخلوطی از روشهای ابتکاری هوش مصنوعی به همراه تحلیل آماری پیشرفته می باشد. یادگیری ماشین اجازه می دهد تا برنامه های کامپیوتری در مورد داده ای که آنها مطالعه می کنند، مانند برنامه هایی که تصمیمهای متفاوتی بر مبنای کیفیت داده مطالعه شده می گیرند، یادگیری داشته باشند و برای مفاهیم پایه ای آن از آمار استفاده می کنند و از الگوریتمها و روشهای ابتکاری هوش مصنوعی را برای رسیدن به هدف بهره می گیرند.

داده کاوی در بسیاری از جهات، سازگاری تکنیکهای یادگیری ماشین با کاربردهای تجاری است. بهترین توصیف از داده کاوی بوسیله اجتماع آمار، هوش مصنوعی و یادگیری ماشین بدست می آید. این تکنیکها سپس با کمک یکدیگر، برای مطالعه داده و پیدا کردن الگوهای نهفته در آنها استفاده می شوند.

بعضی از کاربردهای داده کاوی به شرح زیر است:

  • کاربردهای معمول تجاری: از قبیل تحلیل و مدیریت بازار، تحلیل سبد بازار، بازاریابی هدف، فهم رفتار مشتری، تحلیل و مدیریت ریسک؛
  • مدیریت و کشف فریب: کشف فریب تلفنی، کشف فریبهای بیمه ای و اتومبیل، کشف حقه های کارت اعتباری، کشف تراکنشهای مشکوک مالی (پولشویی)؛
  • متن کاوی[3]: پالایش متن (نامه های الکترونیکی، گروههای خبری و غیره)؛
  • پزشکی: کشف ارتباط علامت و بیماری، تحلیل آرایه های DNA ، تصاویر پزشکی؛
  • ورزش: آمارهای ورزشی؛
  • وب کاوی[4]: پیشنهاد صفحات مرتبط، بهبود ماشینهای جستجوگر یا شخصی سازی حرکت در وب سایت

2-4 داده کاوی چه کارهایی نمی تواند انجام دهد؟

داده کاوی فقط یک ابزار است و نه یک عصای جادویی. داده کاوی به این معنی نیست که شما راحت به کناری بنشینید و ابزارهای داده کاوی همه کار را انجام دهد.

داده کاوی نیاز به شناخت داده ها و ابزارهای تحلیل و افراد خبره در این زمینه ها را از بین نمی برد.

داده کاوی فقط به تحلیلگران برای پیدا کردن الگوها و روابط بین داده ها کمک می کند و در این مورد نیز روابطی که یافته می شود باید به وسیله داده های واقعی دوباره بررسی و تست گردد.

2-5 داده کاوی و انبار داده ها

معمولا داده هایی که در داده کاوی مورد استفاده قرار می گیرند از یک انبار داده استخراج می گردند و در یک پایگاه داده یا مرکز داده ای ویژه برای داده کاوی قرار می گیرند.

اگر داده های انتخابی جزیی از انبار داده ها باشند بسیار مفید است چون بسیاری از اعمالی که برای ساختن انباره داده ها انجام می گیرد با اعمال مقدماتی داده کاوی مشترک است و در نتیجه نیاز به انجام مجدد این اعمال وجود ندارد ، از جمله این اعمال پاکسازی داده ها می باشد.

پایگاه داده مربوط به داده کاوی می تواند جزیی از سیستم انبار داده ها باشد و یا می تواند یک پایگاه داده جدا باشد.

شکل (2-4) داده ها از انباره داه ها استخراج می گردند

 

ولی با این حال وجود انباره داده ها برای انجام داده کاوی شرط لازم نیست و بدون آن هم اگر داده ها دریک یا چندین پایگاه داده باشند می توان داده کاوی را انجام دهیم و بدین منظور فقط کافیست داده ها را در یک پایگاه داده جمع آوری کنیم و اعمال جامعیت داده ها و پاکسازی داده ها را روی آن انجام دهیم. این پایگاه داده جدید مثل یک مرکز داده ای عمل می کند

شکل(2-5( داده ها از چند پایگاه داده استخراج شده اند

2-6 داده کاوی و OLAP

بسیاری فکر می کنند که داده کاوی و OLAP دو چیز مشابه هستند در این بخش سعی می کنیم این مسئله را بررسی کنیم و همانطور که خواهیم دید این دو ابزار های کاملا متفاوت می باشند که می توانند همدیگر را تکمیل کنند.

OLAPجزیی از ابزارهای تصمیم گیری [5]می باشد.سیستم های سنتی گزارش گیری و پایگاه داده ای آنچه را که در پایگاه داده بود توضیح می دادند حال آنکه در OLAP هدف بررسی دلیل صحت یک فرضیه است.

بدین معنی که کاربر فرضیه ای در مورد داده ها و روابط بین آنها ارائه می کند و سپس به وسیله ابزار OLAP با انجام چند Query صحت آن فرضیه را بررسی می کند.

اما این روش برای هنگامی که داده ها بسیار حجیم بوده و تعداد پارامترها زیاد باشد نمیتواند مفید باشد چون حدس روابط بین داده ها کار سخت و بررسی صحت آن بسیار زمانبر خواهد بود.

تفاوت داده کاوی با OLAP در این است که داده کاوی برخلاف OLAP برای بررسی صحت یک الگوی فرضی استفاده نمی شود بلکه خود سعی می کند این الگوها را کشف کند.

[1]Artificial Intelligence

[2]Machine Learning

[3]Text Mining

[4]Web Mining

[5]Decision Support Tools

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *